forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
218 lines (195 loc) · 6.85 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: utf-8 -*
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import re
import six
import argparse
import io
import math
import sys
if six.PY2:
reload(sys)
sys.setdefaultencoding('utf-8')
prog = re.compile("[^a-z ]", flags=0)
def parse_args():
parser = argparse.ArgumentParser(
description="Paddle Fluid word2 vector preprocess")
parser.add_argument(
'--build_dict_corpus_dir', type=str, help="The dir of corpus")
parser.add_argument(
'--input_corpus_dir', type=str, help="The dir of input corpus")
parser.add_argument(
'--output_corpus_dir', type=str, help="The dir of output corpus")
parser.add_argument(
'--dict_path',
type=str,
default='./dict',
help="The path of dictionary ")
parser.add_argument(
'--min_count',
type=int,
default=5,
help="If the word count is less then min_count, it will be removed from dict"
)
parser.add_argument(
'--downsample',
type=float,
default=0.001,
help="filter word by downsample")
parser.add_argument(
'--filter_corpus',
action='store_true',
default=False,
help='Filter corpus')
parser.add_argument(
'--build_dict',
action='store_true',
default=False,
help='Build dict from corpus')
return parser.parse_args()
def text_strip(text):
#English Preprocess Rule
return prog.sub("", text.lower())
# Shameless copy from Tensorflow https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py
# Unicode utility functions that work with Python 2 and 3
def native_to_unicode(s):
if _is_unicode(s):
return s
try:
return _to_unicode(s)
except UnicodeDecodeError:
res = _to_unicode(s, ignore_errors=True)
return res
def _is_unicode(s):
if six.PY2:
if isinstance(s, unicode):
return True
else:
if isinstance(s, str):
return True
return False
def _to_unicode(s, ignore_errors=False):
if _is_unicode(s):
return s
error_mode = "ignore" if ignore_errors else "strict"
return s.decode("utf-8", errors=error_mode)
def filter_corpus(args):
"""
filter corpus and convert id.
"""
word_count = dict()
word_to_id_ = dict()
word_all_count = 0
id_counts = []
word_id = 0
#read dict
with io.open(args.dict_path, 'r', encoding='utf-8') as f:
for line in f:
word, count = line.split()[0], int(line.split()[1])
word_count[word] = count
word_to_id_[word] = word_id
word_id += 1
id_counts.append(count)
word_all_count += count
#write word2id file
print("write word2id file to : " + args.dict_path + "_word_to_id_")
with io.open(
args.dict_path + "_word_to_id_", 'w+', encoding='utf-8') as fid:
for k, v in word_to_id_.items():
fid.write(k + " " + str(v) + '\n')
#filter corpus and convert id
if not os.path.exists(args.output_corpus_dir):
os.makedirs(args.output_corpus_dir)
for file in os.listdir(args.input_corpus_dir):
with io.open(
os.path.join(args.output_corpus_dir, 'convert_' + file),
"w",
encoding='utf-8') as wf:
with io.open(
os.path.join(args.input_corpus_dir, file),
encoding='utf-8') as rf:
print(os.path.join(args.input_corpus_dir, file))
for line in rf:
signal = False
line = text_strip(line)
words = line.split()
for item in words:
if item in word_count:
idx = word_to_id_[item]
else:
idx = word_to_id_[native_to_unicode('<UNK>')]
count_w = id_counts[idx]
corpus_size = word_all_count
keep_prob = (
math.sqrt(count_w /
(args.downsample * corpus_size)) + 1
) * (args.downsample * corpus_size) / count_w
r_value = random.random()
if r_value > keep_prob:
continue
wf.write(_to_unicode(str(idx) + " "))
signal = True
if signal:
wf.write(_to_unicode("\n"))
else:
wf.write(_to_unicode("\n"))
def build_dict(args):
"""
proprocess the data, generate dictionary and save into dict_path.
:param corpus_dir: the input data dir.
:param dict_path: the generated dict path. the data in dict is "word count"
:param min_count:
:return:
"""
# word to count
word_count = dict()
for file in os.listdir(args.build_dict_corpus_dir):
with io.open(
args.build_dict_corpus_dir + "/" + file,
encoding='utf-8') as f:
print("build dict : ", args.build_dict_corpus_dir + "/" + file)
for line in f:
line = text_strip(line)
words = line.split()
for item in words:
if item in word_count:
word_count[item] = word_count[item] + 1
else:
word_count[item] = 1
item_to_remove = []
for item in word_count:
if word_count[item] <= args.min_count:
item_to_remove.append(item)
unk_sum = 0
for item in item_to_remove:
unk_sum += word_count[item]
del word_count[item]
#sort by count
word_count[native_to_unicode('<UNK>')] = unk_sum
word_count = sorted(
word_count.items(), key=lambda word_count: -word_count[1])
with io.open(args.dict_path, 'w+', encoding='utf-8') as f:
for k, v in word_count:
f.write(k + " " + str(v) + '\n')
if __name__ == "__main__":
args = parse_args()
if args.build_dict:
build_dict(args)
elif args.filter_corpus:
filter_corpus(args)
else:
print(
"error command line, please choose --build_dict or --filter_corpus")