|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +from .utils import * |
| 4 | + |
| 5 | +from etl_utils import String, Speed, BufferLogger, ItemsGroupAndIndexes |
| 6 | + |
| 7 | +# TODO 检测 item.typename() 存在 |
| 8 | + |
| 9 | +from .features import DefaultFeatures |
| 10 | + |
| 11 | +class DetDupCore(object): |
| 12 | + """ |
| 13 | + Detect duplicated items, use decision tree. |
| 14 | +
|
| 15 | + Usage: |
| 16 | + ----------- |
| 17 | + """ |
| 18 | + |
| 19 | + similarity_rate = 0.90 |
| 20 | + |
| 21 | + def __init__(self, features_dir, detdup_data_model): |
| 22 | + self.features_dir = features_dir |
| 23 | + |
| 24 | + self.model = detdup_data_model |
| 25 | + |
| 26 | + self.features = [DefaultFeatures()] |
| 27 | + self.features_map = dict() |
| 28 | + |
| 29 | + self.storage_type = ['memory', 'disk'][0] |
| 30 | + |
| 31 | + self.is_logger = True |
| 32 | + self.is_inspect_detail = False |
| 33 | + self.buffer_logger = BufferLogger(os.path.join(self.features_dir, 'process.log')) |
| 34 | + |
| 35 | + self.result = ItemsGroupAndIndexes() |
| 36 | + self.count = 0 |
| 37 | + |
| 38 | + self.candidate_dup_count = None |
| 39 | + |
| 40 | + def select_feature(self, item1): |
| 41 | + f1 = item1.typename |
| 42 | + if not isinstance(f1, str) and not isinstance(f1, unicode): f1 = f1() |
| 43 | + return self.features_map[f1].insert_item(item1) |
| 44 | + |
| 45 | + def feeded(self): |
| 46 | + for feature1 in self.features: |
| 47 | + # 这个Feature是否有效 |
| 48 | + if not feature1.link_to_detdup: |
| 49 | + continue |
| 50 | + # 之前已经导出数据库啦?! |
| 51 | + if os.path.exists(feature1.sqlite3db_path()): |
| 52 | + return True |
| 53 | + return False |
| 54 | + |
| 55 | + def load_features_from_db(self): |
| 56 | + for feature1 in self.features: feature1.load_features_tree() |
| 57 | + |
| 58 | + def dump_features_from_memory(self): |
| 59 | + for feature1 in self.features: feature1.dump_features_tree() |
| 60 | + |
| 61 | + def feed_items(self, obj, persist=True): |
| 62 | + """ Feed items to features """ |
| 63 | + # 1. insert it into memory |
| 64 | + [self.select_feature(item1).feed_item() for item1 in process_notifier(obj)] |
| 65 | + # 2. backup into files fully! |
| 66 | + if persist: |
| 67 | + self.dump_features_from_memory() |
| 68 | + return self |
| 69 | + |
| 70 | + def plug_features(self, features1): |
| 71 | + """ |
| 72 | + 1. Plug features, and bind typename to classify items |
| 73 | + 2. init features tree, memory or disk |
| 74 | + """ |
| 75 | + if not isinstance(features1, list): features1 = [features1] |
| 76 | + self.features.extend(features1) |
| 77 | + for f1 in self.features: |
| 78 | + f1.link_to_detdup = self |
| 79 | + f1.build_features_tree() |
| 80 | + |
| 81 | + for f1 in self.features: |
| 82 | + self.features_map[f1.typename] = f1 |
| 83 | + return self |
| 84 | + |
| 85 | + time_sql = 0 |
| 86 | + time_calculate_text_similarity = 0 |
| 87 | + time_fetch_content = 0 |
| 88 | + |
| 89 | + def detect_duplicated_items(self, item1): |
| 90 | + feature1 = self.select_feature(item1) |
| 91 | + speed = Speed() |
| 92 | + |
| 93 | + t1 = datetime.now() |
| 94 | + item_ids = feature1.fetch_matched_item_ids() |
| 95 | + t2 = datetime.now(); self.time_sql += (t2 - t1).total_seconds(); |
| 96 | + |
| 97 | + # 4. 看看题目相似度 |
| 98 | + # 相似度得大于 95% |
| 99 | + new_ids = list() |
| 100 | + for item_id1 in item_ids: |
| 101 | + # 2. 排除自己 |
| 102 | + if item_id1 == unicode(item1.item_id): continue |
| 103 | + |
| 104 | + if item_id1 not in self.model: |
| 105 | + # 删除不一致数据, 以在self.model里为准 |
| 106 | + feature1.delete_item_ids([item_id1]) |
| 107 | + continue |
| 108 | + |
| 109 | + t11 = datetime.now() |
| 110 | + content1 = self.model[item_id1].item_content |
| 111 | + t12 = datetime.now(); self.time_fetch_content += (t12 - t11).total_seconds(); |
| 112 | + |
| 113 | + t11 = datetime.now() |
| 114 | + res1 = String.calculate_text_similarity(item1.item_content, |
| 115 | + content1, |
| 116 | + inspect=True, |
| 117 | + skip_special_chars=True, |
| 118 | + similar_rate_baseline=self.similarity_rate) |
| 119 | + t12 = datetime.now(); self.time_calculate_text_similarity += (t12 - t11).total_seconds(); |
| 120 | + |
| 121 | + if res1['similarity_rate'] > self.similarity_rate: |
| 122 | + new_ids.append(item_id1) |
| 123 | + self.buffer_logger.append(res1['info']) |
| 124 | + self.buffer_logger.inspect() |
| 125 | + print "字符串相似度 [前]", (len(item_ids) - 1), "个,[后]", len(new_ids), "个" |
| 126 | + |
| 127 | + item_ids = new_ids |
| 128 | + |
| 129 | + # 如果要排除已处理过为排重的 |
| 130 | + speed.tick().inspect() |
| 131 | + |
| 132 | + print "self.time_sql", self.time_sql |
| 133 | + print "self.time_calculate_text_similarity", self.time_calculate_text_similarity |
| 134 | + print "self.time_fetch_content", self.time_fetch_content |
| 135 | + |
| 136 | + return item_ids |
| 137 | + |
| 138 | + def detect_duplicated_items_verbose(self, item_id1, verbose=False): |
| 139 | + self.count += 1 |
| 140 | + print "\n"*5, "从", self.candidate_dup_count, "个候选题目中 排重第", self.count, "个题目。", item_id1 |
| 141 | + |
| 142 | + # 如果结果已经计算出来 |
| 143 | + if self.result.exists(item_id1): |
| 144 | + return self.result.find(item_id1) |
| 145 | + |
| 146 | + self.buffer_logger.append("-"*80) |
| 147 | + self.buffer_logger.append("要处理的记录") |
| 148 | + |
| 149 | + item1 = self.model[item_id1] |
| 150 | + if verbose: item1.inspect() |
| 151 | + |
| 152 | + self.buffer_logger.append("") |
| 153 | + item_ids = self.detect_duplicated_items(item1) |
| 154 | + self.buffer_logger.append("疑似和", item1.item_id, "重复的条目有", len(item_ids), "个") |
| 155 | + for item_id1 in item_ids: |
| 156 | + if verbose: self.model[item_id1].inspect() |
| 157 | + self.buffer_logger.append("") |
| 158 | + |
| 159 | + # 输出日志 |
| 160 | + if (len(item_ids) > 0) and self.is_logger: |
| 161 | + self.buffer_logger.inspect() |
| 162 | + else: |
| 163 | + self.buffer_logger.clear() |
| 164 | + |
| 165 | + item_ids.append(unicode(item1.item_id)) |
| 166 | + |
| 167 | + # 有重复结果,就存储一下 |
| 168 | + if len(item_ids) > 1: |
| 169 | + self.result.add([i1 for i1 in item_ids]) |
| 170 | + |
| 171 | + return item_ids |
0 commit comments