-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbase_main.py
373 lines (299 loc) · 13.5 KB
/
base_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import copy
import torch
import shutil
import time
import warnings
import numpy as np
import random
from ops import Augment
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm_
from tensorboardX import SummaryWriter
from opts import parser
from ops.mapmeter import mAPMeter, LTMeter
from ops.utils import AverageMeter, accuracy
from ops import losses
from tools import utils
from dataset import dutils
from models import models
from ops.feature_loader import BasicDataset, ResamplingDataset_Mask
def setup_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def adjust_learning_rate(optimizer, epoch, lr_type, lr_steps):
if lr_type == 'step':
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
elif lr_type == 'cos':
import math
lr = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.epochs))
else:
raise NotImplementedError
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def check_rootfolders():
"""Create log and model folder"""
folders_util = [args.root_log, args.root_model,
os.path.join(args.root_log, args.store_name),
os.path.join(args.root_model, args.store_name)]
for folder in folders_util:
if not os.path.exists(folder):
print('creating folder ' + folder)
os.mkdir(folder)
def save_checkpoint(state, is_best):
filename = '%s/%s/ckpt.pth.tar' % (args.root_model, args.store_name)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace('pth.tar', 'best.pth.tar'))
def load_data(num_class, input_dir):
train_list = open(args.train_list, 'r').readlines()
val_list = open(args.val_list, 'r').readlines()
if args.resample == 'None':
train_dataset = BasicDataset(train_list, input_dir, args.train_num_frames,\
cls_num=num_class, train_mode=True)
else:
train_dataset = ResamplingDataset_Mask(train_list, input_dir, args.train_num_frames, \
rstype=args.resample, cls_num=args.num_class, train_mode=True)
val_dataset = BasicDataset(val_list, input_dir, args.val_num_frames, \
cls_num=num_class, train_mode=False)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, \
shuffle=True, num_workers=args.workers, pin_memory=True)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, \
shuffle=False, num_workers=args.workers, pin_memory=True)
return train_dataloader, val_dataloader
def main():
global args, best_mAP, criterion, optimizer, tf_writer, log_training
best_mAP = 0
args = parser.parse_args()
start_epoch = args.start_epoch
num_class = args.num_class
if args.resample != 'None':
args.reduce = "none"
print ("########################################################################\n")
print ("Feature name: {} \nNumber of class: {} \nTrain frames: {} \nVal frames: {}\nReduction: {}".\
format(args.feature_name, args.num_class, args.train_num_frames, args.val_num_frames, args.reduce))
print ("Applied long-tailed strategies: \n")
print ("\tAugmentation: {} \t Re-weighting: {} \t Re-sampling: {} \n". \
format(args.augment, args.loss_func, args.resample))
print ("######################################################################## \n")
check_rootfolders()
setup_seed(args.seed)
input_dir = dutils.get_feature_path(args.feature_name)
feature_dim = dutils.get_feature_dim(args.feature_name)
args.lc_list, args.train_list, args.val_list = dutils.get_label_path()
train_loader, val_loader = load_data(num_class, input_dir)
criterion = utils.find_class_by_name(args.loss_func, [losses])(args, logits=True, reduce=args.reduce)
indices = utils.get_indices(args.lc_list, head=args.head, tail=args.tail)
model = utils.find_class_by_name(args.model_name, [models])(feature_dim, num_class)
model = model.cuda()
if args.resume != "":
print ("=> Loading checkpoint {}".format(args.resume))
ckpt = torch.load(args.resume)
best_mAP = ckpt['best_mAP']
start_epoch = ckpt['epoch'] + 1
acc1 = ckpt['Acc@1']
acc5 = ckpt['Acc@5']
sd = ckpt['state_dict']
print ("Loaded checkpoint {} epoch {}: best_mAP {} | Acc@1 {} | Acc@5 {}". \
format(args.resume, start_epoch, best_mAP, acc1, acc5))
model.load_state_dict(sd)
print ("Params to learn:")
params_to_update = []
for name, param in model.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print ('\t', name)
optimizer = torch.optim.Adam(params_to_update, lr=args.lr)
log_training = open(os.path.join(args.root_log, args.store_name, 'log.csv'),'w')
tf_writer = SummaryWriter(log_dir=os.path.join(args.root_log, args.store_name))
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_type, args.lr_steps)
print ("Training for Epoch {}".format(epoch))
if args.resample != "None":
rs_train(train_loader, model, epoch, log_training)
else:
train(train_loader, model, epoch, log_training)
if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
acc1, acc5, mAP = validate(val_loader, model, epoch, log_training, indices)
is_best = mAP > best_mAP
best_mAP = max(mAP, best_mAP)
tf_writer.add_scalar('best_mAP/test_best', best_mAP, epoch)
print ('Test Epoch {}: Acc@1: {} | Acc@5: {} | mAP: {} | best_mAP: {}'.\
format(epoch, acc1, acc5, mAP, best_mAP))
save_checkpoint({
'epoch': epoch + 1,
'feature': args.feature_name,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_mAP': best_mAP,
'Acc@1': acc1,
'Acc@5': acc5},
is_best)
def train(loader, model, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
mAP = mAPMeter()
model.train()
end = time.time()
if args.loss_func == 'LDAM':
# apply DRW to LDAM
criterion.reset_epoch(epoch)
for i, (vid, feature, target) in enumerate(loader):
feature = feature.cuda()
target = target.float().cuda(non_blocking=True)
if args.augment == "mixup":
gamma = np.random.beta(1.0, 1.0)
mixed_input, mixed_target = Augment.mixup(feature, target, gamma)
prediction, output = model(mixed_input)
loss = criterion(output, mixed_target)
elif args.augment == "None":
prediction, output = model(feature)
loss = criterion(output, target)
else:
print ("{} not implemented. Please choose ['mixup', 'FrameStack', 'None'].".\
format(args.augment))
raise NotImplementedError
losses.update(loss.item(), output.size(0))
with torch.no_grad():
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
top1.update(prec1, output.size(0))
top5.update(prec5, output.size(0))
# accumulate gradient for each parameter
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
# update parameters based on current gradients
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\n'
.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, \
lr=optimizer.param_groups[-1]['lr']))
print(output)
log.write(output)
log.flush()
tf_writer.add_scalar('loss/train_epoch', losses.avg, epoch)
tf_writer.add_scalar('acc/train_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/train_top5', top5.avg, epoch)
tf_writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], epoch)
def validate(loader, model, epoch, log, indices):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
mAP = mAPMeter()
LTmAP =LTMeter(indices)
model.eval()
end = time.time()
with torch.no_grad():
for i, (vid, feature, target) in enumerate(loader):
feature = feature.cuda()
target = target.float().cuda()
prediction, output = model(feature)
loss = criterion(output, target)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), feature.size(0))
top1.update(prec1, feature.size(0))
top5.update(prec5, feature.size(0))
mAP.add(prediction, target)
LTmAP.add(prediction, target)
batch_time.update(time.time() - end)
end = time.time()
head_map = LTmAP.value()["head"]
medium_map = LTmAP.value()["medium"]
tail_map = LTmAP.value()["tail"]
output = ('Testing Results: Prec@1 {top1.avg:.5f} | Prec@5 {top5.avg:.5f} | Loss {loss.avg:.5f} '
.format(top1=top1, top5=top5, loss=losses))
print(output)
lt_output = ("Overall mAP = {:.3f} | Head = {:.5f} | Medium = {:.5f} | Tail = {:.5f}".\
format(mAP.avg(), head_map, medium_map, tail_map))
print (lt_output)
if log is not None:
log.write(output + ' mAP {}\n'.format(mAP.avg()))
log.write(lt_output+'\n')
log.flush()
if tf_writer is not None:
tf_writer.add_scalar('loss/test', losses.avg, epoch)
tf_writer.add_scalar('acc/test_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/test_top5', top5.avg, epoch)
tf_writer.add_scalar('mAP/test', mAP.avg(), epoch)
return top1.avg, top5.avg, mAP.avg()
def rs_train(loader, model, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
mAP = mAPMeter()
model.train()
end = time.time()
if args.loss_func == 'LDAM':
# apply DRW to LDAM
criterion.reset_epoch(epoch)
for i, (vid, feature, target, mask) in enumerate(loader):
feature = feature.cuda()
target = target.float().cuda(non_blocking=True)
mask = mask.float().cuda()
if args.augment == "mixup":
gamma = np.random.beta(1.0, 1.0)
mixed_input, mixed_target = Augment.mixup(feature, target, gamma)
prediction, output = model(mixed_input)
loss = criterion(output, mixed_target)
elif args.augment == "None":
prediction, output = model(feature)
loss = criterion(output, target)
else:
print ("{} not implemented. Please choose ['mixup', 'FrameStack', 'None'].".\
format(args.augment))
raise NotImplementedError
loss = loss * mask
loss = torch.mean(torch.sum(loss, 1))
losses.update(loss.item(), output.size(0))
with torch.no_grad():
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
top1.update(prec1, output.size(0))
top5.update(prec5, output.size(0))
# accumulate gradient for each parameter
loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(model.parameters(), args.clip_gradient)
# update parameters based on current gradients
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\n'
.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, \
lr=optimizer.param_groups[-1]['lr']))
print(output)
log.write(output)
log.flush()
tf_writer.add_scalar('loss/train_epoch', losses.avg, epoch)
tf_writer.add_scalar('acc/train_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/train_top5', top5.avg, epoch)
tf_writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], epoch)
if __name__=='__main__':
main()