The selected pre-train model is uncased_L-12_H-768_A-12
The running platform is Colab and you can run it on other Linux system.
The total number of data = 10000
The number distribution of Train: dev: test = 6:2:2
First experiment result eval_accuracy: 0.7702703
Second experiment result eval_accuracy: 0.7612613
Third experiment result eval_accuracy: 0.7742743
Average eval_accuracy by three times experiments: 0.76860196666
Range of change: (-0.00734066666, +0.00567233334)
Here is the code of running the run_classifier.py
with detail training parameters which includes training and evaluation.
python run_classifier.py \
--task_name=quora \
--do_train=True \
--do_eval=True \
--do_predict=True \
--data_dir=../Data/Model_train_dev_test_dataset/BERT_train_dev_test_dataset/ \
--vocab_file=gs://cloud-tpu-checkpoints/bert/uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file=gs://cloud-tpu-checkpoints/bert/uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=gs://cloud-tpu-checkpoints/bert/uncased_L-12_H-768_A-12/bert_model.ckpt \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=5e-5 \
--num_train_epochs=2.0 \
--output_dir=output
Training script is referred from Sentence (and sentence-pair) classification tasks
Test script is referred from Prediction from classifier