Skip to content

Commit

Permalink
sophia wip
Browse files Browse the repository at this point in the history
  • Loading branch information
vpj committed Jul 14, 2023
1 parent e8a5feb commit f45ca5e
Showing 1 changed file with 124 additions and 0 deletions.
124 changes: 124 additions & 0 deletions labml_nn/optimizers/sophia.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
"""
---
title: Sophia Optimizer
summary: A simple PyTorch implementation/tutorial of Sophia optimizer
---
# Sophia Optimizer
This is a [PyTorch](https://pytorch.org) implementation of *Sophia-G* from paper
[Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training](https://papers.labml.ai/paper/2305.14342).
"""

from typing import Dict, Any, Tuple, Optional

import torch
from torch import nn

from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay


class Sophia(GenericAdaptiveOptimizer):
"""
## Sophia-G Optimizer
We extend the class `GenericAdaptiveOptimizer` defined in [`__init__.py`](index.html)
to implement the Sophia optimizer.
"""

def __init__(self, params,
lr: float = 1e-4, betas: Tuple[float, float] = (0.965, 0.99), eps: float = 1e-16,
rho: float = 0.04,
training_batch_tokens: int = None,
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
defaults: Optional[Dict[str, Any]] = None):
"""
### Initialize the optimizer
* `params` is the list of parameters
* `lr` is the learning rate $\alpha$
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
* `eps` is $\epsilon$
* `pho` is $\rho$
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
* `optimized_update` is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$
* `defaults` is a dictionary of default for group values.
This is useful when you want to extend the class `Adam`.
"""
if training_batch_tokens is None:
raise RuntimeError('Please set the number of tokens per training batch.')

defaults = {} if defaults is None else defaults
defaults.update(weight_decay.defaults())
defaults.update(dict(rho=rho, training_batch_tokens=training_batch_tokens))
super().__init__(params, defaults, lr, betas, eps)

self.weight_decay = weight_decay
self.optimized_update = optimized_update

def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
"""
### Initialize a parameter state
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `param` is the parameter tensor $\theta_{t-1}$
"""

# This is the number of optimizer steps taken on the parameter, $t$
state['step'] = 0
# state['hessian_updates']
# Exponential moving average of gradients, $m_t$
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
# Exponential moving average of Hessian
state['hessian'] = torch.zeros_like(param, memory_format=torch.preserve_format)

def update_hessian(self, batch_size):
for group in self.param_groups:
beta1, beta2 = group['betas']
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]

if len(state) == 0:
self.init_state(state, group, p)

state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=(1 - beta2) * batch_size)

def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
"""
### Take an update step for a given parameter tensor
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
* `param` is the parameter tensor $\theta_{t-1}$
"""

# Calculate weight decay
grad = self.weight_decay(param, grad, group)

# Get $\beta_1$ and $\beta_2$
beta1, beta2 = group['betas']

rho = group['rho']

# Get $m_{t-1}$ and $v_{t-1}$
m, hessian = state['exp_avg'], state['hessain']

# In-place calculation of $m_t$
# $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
m.mul_(beta1).add_(grad, alpha=1 - beta1)

# Increment $t$ the number of optimizer steps
state['step'] += 1

# Get learning rate
lr = group['lr']

ratio = (m.abs() / (rho * hessian + group['training_batch_tokens'] * group['eps'])).clamp(None, 1)

param.data.addcmul_(m.sign(), ratio, value=-lr)

0 comments on commit f45ca5e

Please sign in to comment.