-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathcurve.py
153 lines (125 loc) · 5.51 KB
/
curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from py_ecc.fields.field_elements import FQ as Field
import py_ecc.bn128 as b
from typing import NewType
primitive_root = 5
G1Point = NewType("G1Point", tuple[b.FQ, b.FQ])
G2Point = NewType("G2Point", tuple[b.FQ2, b.FQ2])
class Scalar(Field):
field_modulus = b.curve_order
# Gets the first root of unity of a given group order
@classmethod
def root_of_unity(cls, group_order: int):
return Scalar(5) ** ((cls.field_modulus - 1) // group_order)
# Gets the full list of roots of unity of a given group order
@classmethod
def roots_of_unity(cls, group_order: int):
o = [Scalar(1), cls.root_of_unity(group_order)]
while len(o) < group_order:
o.append(o[-1] * o[1])
return o
Base = NewType("Base", b.FQ)
def ec_mul(pt, coeff):
if hasattr(coeff, "n"):
coeff = coeff.n
return b.multiply(pt, coeff % b.curve_order)
# Elliptic curve linear combination. A truly optimized implementation
# would replace this with a fast lin-comb algo, see https://ethresear.ch/t/7238
def ec_lincomb(pairs):
return lincomb(
[pt for (pt, _) in pairs],
[int(n) % b.curve_order for (_, n) in pairs],
b.add,
b.Z1,
)
# Equivalent to:
# o = b.Z1
# for pt, coeff in pairs:
# o = b.add(o, ec_mul(pt, coeff))
# return o
################################################################
# multicombs
################################################################
import random, sys, math
def multisubset(numbers, subsets, adder=lambda x, y: x + y, zero=0):
# Split up the numbers into partitions
partition_size = 1 + int(math.log(len(subsets) + 1))
# Align number count to partition size (for simplicity)
numbers = numbers[::]
while len(numbers) % partition_size != 0:
numbers.append(zero)
# Compute power set for each partition (eg. a, b, c -> {0, a, b, a+b, c, a+c, b+c, a+b+c})
power_sets = []
for i in range(0, len(numbers), partition_size):
new_power_set = [zero]
for dimension, value in enumerate(numbers[i : i + partition_size]):
new_power_set += [adder(n, value) for n in new_power_set]
power_sets.append(new_power_set)
# Compute subset sums, using elements from power set for each range of values
# ie. with a single power set lookup you can get the sum of _all_ elements in
# the range partition_size*k...partition_size*(k+1) that are in that subset
subset_sums = []
for subset in subsets:
o = zero
for i in range(len(power_sets)):
index_in_power_set = 0
for j in range(partition_size):
if i * partition_size + j in subset:
index_in_power_set += 2**j
o = adder(o, power_sets[i][index_in_power_set])
subset_sums.append(o)
return subset_sums
# Reduces a linear combination `numbers[0] * factors[0] + numbers[1] * factors[1] + ...`
# into a multi-subset problem, and computes the result efficiently
def lincomb(numbers, factors, adder=lambda x, y: x + y, zero=0):
# Maximum bit length of a number; how many subsets we need to make
maxbitlen = max(len(bin(f)) - 2 for f in factors)
# Compute the subsets: the ith subset contains the numbers whose corresponding factor
# has a 1 at the ith bit
subsets = [
{i for i in range(len(numbers)) if factors[i] & (1 << j)}
for j in range(maxbitlen + 1)
]
subset_sums = multisubset(numbers, subsets, adder=adder, zero=zero)
# For example, suppose a value V has factor 6 (011 in increasing-order binary). Subset 0
# will not have V, subset 1 will, and subset 2 will. So if we multiply the output of adding
# subset 0 with twice the output of adding subset 1, with four times the output of adding
# subset 2, then V will be represented 0 + 2 + 4 = 6 times. This reasoning applies for every
# value. So `subset_0_sum + 2 * subset_1_sum + 4 * subset_2_sum` gives us the result we want.
# Here, we compute this as `((subset_2_sum * 2) + subset_1_sum) * 2 + subset_0_sum` for
# efficiency: an extra `maxbitlen * 2` group operations.
o = zero
for i in range(len(subsets) - 1, -1, -1):
o = adder(adder(o, o), subset_sums[i])
return o
# Tests go here
def make_mock_adder():
counter = [0]
def adder(x, y):
if x and y:
counter[0] += 1
return x + y
return adder, counter
def test_multisubset(numcount, setcount):
numbers = [random.randrange(10**20) for _ in range(numcount)]
subsets = [
{i for i in range(numcount) if random.randrange(2)} for i in range(setcount)
]
adder, counter = make_mock_adder()
o = multisubset(numbers, subsets, adder=adder)
for output, subset in zip(o, subsets):
assert output == sum([numbers[x] for x in subset])
def test_lincomb(numcount, bitlength=256):
numbers = [random.randrange(10**20) for _ in range(numcount)]
factors = [random.randrange(2**bitlength) for _ in range(numcount)]
adder, counter = make_mock_adder()
o = lincomb(numbers, factors, adder=adder)
assert o == sum([n * f for n, f in zip(numbers, factors)])
total_ones = sum(bin(f).count("1") for f in factors)
print("Naive operation count: %d" % (bitlength * numcount + total_ones))
print("Optimized operation count: %d" % (bitlength * 2 + counter[0]))
print(
"Optimization factor: %.2f"
% ((bitlength * numcount + total_ones) / (bitlength * 2 + counter[0]))
)
if __name__ == "__main__":
test_lincomb(int(sys.argv[1]) if len(sys.argv) >= 2 else 80)